The number of infinite red-shift surfaces of the generalised Kerr-Tomimatsu-Sato metric

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 12835
(http://iopscience.iop.org/0305-4470/12/6/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 16:06

Please note that terms and conditions apply.

The number of infinite red-shift surfaces of the generalised Kerr-Tomimatsu-Sato metric

P Dale
42 Ferguson Road, Olbury, Warley, West Midlands, UK

Received 8 August 1978, in final form 2 November 1978

Abstract

A proof that a certain polynomial has n real zeros is presented. From this it then follows that the generalised Kerr-Tomimatsu-Sato metric has $2 n$ distinct infinite red-shift surfaces.

1. Introduction

The number of real roots of the determinantal polynomial (Yamazaki 1977, Dale 1978)

$$
A_{n}=\left|a_{t!}\right|_{n}
$$

where

$$
a_{i j}=\frac{z^{i+i-1}+(-1)^{i+j} c}{i+j-1}
$$

and c is an arbitrary negative constant is of significance for the Kerr (1963) and Tomimatsu-Sato (1973) class of metrics. Since in this case the norm of the Killing vector (∂t) is A_{n} / B, an infinite red-shift surface will occur when $A_{n}=0$. In this paper it will be shown that A_{n} has n distinct real positive zeros, from which it then follows that there are $2 n$ such surfaces (Cosgrove 1977).

In the theorems which follow, use will be made of Jacobi's theorem in the following form.

Let

$$
D_{n}=\left|d_{i j}\right|_{n}
$$

be a symmetrical determinant of order $n(\geqslant 2)$; then

$$
\begin{equation*}
D_{11} D_{n n}-D_{1 n, 1 n} D_{n}=D_{1 n}^{2} \tag{1}
\end{equation*}
$$

where $D_{i,}$ is the cofactor of $d_{i j}$ and $D_{1 n, 1 n}$ denotes the determinant obtained from D by deleting the first and nth rows and columns.

2. The number of real zeros of $\boldsymbol{A}_{\boldsymbol{n}}$

Lemma. If

$$
P_{n}=\left|\alpha_{i i}\right|_{n}
$$

where

$$
\alpha_{i j}=\frac{z^{i+1}-c(-1)^{t+1}}{i+j}
$$

then $P_{n}>0$.
Proof. Let

$$
\alpha=\left(\alpha_{i j}\right)_{n} \quad \beta=\left(\beta_{i j}\right)_{n},
$$

where

$$
\beta_{i j}=\binom{i-1}{j-1} \xi^{i-j} \quad(i \geqslant j) \quad \text { and } \quad \beta_{i j}=0 \quad(i<j)
$$

and form the matrix product $\beta \alpha \beta^{\mathrm{T}}$ where the T denotes the transpose. Let

$$
\begin{equation*}
\gamma=\left(\gamma_{i i}\right)_{n}=\beta \alpha \beta^{\mathrm{T}} \tag{2}
\end{equation*}
$$

Taking determinants of (2) we get

$$
\begin{equation*}
P_{n}=P_{n}(z, 0, c)=P_{n}(z, \xi, c) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{n}(z, \xi, c)=\left|\gamma_{i j}\right|_{n} . \tag{4}
\end{equation*}
$$

Differentiating the identity (3) partially with respect to z and then putting $\xi=-z$ we get

$$
\begin{equation*}
\dot{P}_{n}=z Q_{11} \tag{5}
\end{equation*}
$$

where Q_{11} is the cofactor of λ_{11} in

$$
\begin{aligned}
& Q_{n}=\left|\lambda_{i l}\right|_{n} \\
& \lambda_{i j}=\frac{(1-c) z^{i+1}+c(z-i-j+1)(1+z)^{i+j-1}}{(i+j)(i+j-1)}
\end{aligned}
$$

and the dot denotes differentiation with respect to z.
By applying Jacobi's theorem (equation (1)) to the determinant Q_{n} and using equations (3) and (5) we get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{P_{n}}{P_{n-1}}\right)=z\left(\frac{Q_{1 n}}{P_{n-1}}\right)^{2} \tag{6}
\end{equation*}
$$

whenever $P_{n-1} \neq 0$.
Now, by assuming that $P_{n-1}>0$ and noting that when $z=0$

$$
P_{n} / P_{n-1}>0
$$

it follows from (6) that $P_{n}>0$. But $P_{1}=\frac{1}{2}\left(z^{2}-c\right)$ and hence the lemma follows by induction.

Theorem. The determinantal polynomial A_{n} has exactly n distinct real positive zeros.

Proof. Applying Jacobi's theorem to the determinant A_{n} we get

$$
\begin{equation*}
A_{11} A_{n-1}-A_{1 n, 1 n} A_{n}=P_{n-1}^{2}>0 \quad \text { (lemma) } \tag{7}
\end{equation*}
$$

and from (7) it follows that A_{n} and A_{n-1} cannot have a common real zero.
Now, if

$$
B_{n}=\left|b_{i j}\right|_{n}
$$

where

$$
b_{i j}=\frac{c(1+z)^{1+j-1}+(1-c) z^{i+l-1}}{i+j-1}
$$

then

$$
\begin{align*}
& A_{n}=B_{n} \tag{8}\\
& \dot{A}_{n}=B_{11} \quad \text { (the cofactor of } b_{11} \text {) } \tag{9}
\end{align*}
$$

(see Dale 1978). By applying Jacobi's theorem to the determinant B_{n} and using equations (8) and (9) we get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} z}\left(\frac{A_{n}}{A_{n-1}}\right) \geqslant 0 \tag{10}
\end{equation*}
$$

whenever $A_{n-1} \neq 0$. Also, when $z=0$

$$
\begin{equation*}
A_{n} / A_{n-1}<0 \tag{11}
\end{equation*}
$$

and for large z

$$
\begin{equation*}
A_{n} / A_{n-1} \sim k^{2} z^{2 n-1} \tag{12}
\end{equation*}
$$

If we now assume that the real zeros of A_{n-1} occur at $z=z_{i}, i=0,1, \ldots,(n-2)$, and that $0<z_{0}<z_{1} \ldots<z_{n-2}$, then since A_{n} and A_{n-1} have no common real zero it follows from equations (10)-(12) that in each of the intervals $0<z<z_{0}, z_{i}<z<z_{i+1}$, ($i=0,1, \ldots, n-3$), $z>z_{n-2}, A_{n}$ has one and only one real zero and none in the interval $z<0$. Hence, if the theorem is true for A_{n-1} it is true for A_{n}. But $A_{1}=z+c$, which has one real positive zero. Therefore, by induction, A_{n} must have n distinct real positive zeros. Further, from equation (7) we see that A_{11} and A_{n} cannot have a common real zero. But since (Dale 1978)

$$
(1+z) \dot{A}_{n}-n^{2} A_{n}=(1-c) A_{11}
$$

it follows that A_{n} and \dot{A}_{n} cannot have a common real zero, i.e. none of the real zeros of A_{n} is repeated.

References

