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Abstract. A proof that a certain polynomial has n real zeros is presented. From this it then 
follows that the generalised Kerr-Tomimatsu-Sat0 metric has 2n distinct infinite red-shift 
surfaces. 

1. Introduction 

The number of real roots of the determinantal polynomial (Yamazaki 1977, Dale 1978) 

A n  = l a r j l n  

where 

and c is an arbitrary negative constant is of significance for the Kerr (1963) and 
Tomimatsu-Sat0 (1973) class of metrics. Since in this case the norm of the Killing 
vector (at)  is AJB, an infinite red-shift surface will occur when An = 0. In this paper it 
will be shown that An has n distinct real positive zeros, from which it then follows that 
there are 2 n  such surfaces (Cosgrove 1977). 

In the theorems which follow, use will be made of Jacobi's theorem in the following 
form. 

Let 

D n  = I d i j l n  

be a symmetrical determinant of order n (a2 ) ;  then 

~ 1 1 ~ " "  - D l n , l n D n  = D : n  (1) 

where Di, is the cofactor of d,i and D l n , l n  denotes the determinant obtained from D by 
deleting the first and nth rows and columns. 

2. The number of real zeros of A, 

Lemma. If 

P n  = I a i J n  

0305-4470/79/060835 + 03$01.00 0 1979 The Institute of Physics 835 



836 P Dale 

where 

then Pn == 0. 

where 

and form the matrix product PapT where the T denotes the transpose. Let 

(2) T 
Y = (yi ,)n = PaP 

Taking determinants of (2) we get 

Pn =pn(z, 0 ,  c ) = P n ( z ,  6, C) (3) 

Differentiating the identity (3) partially with respect to z and then putting 5 = -2 we get 

Pn=zQ11 ( 5 )  

where Qll is the cofactor of A l l  in 

Qn = IAi/ In 

and the dot denotes differentiation with respect to z .  

equations (3) and ( 5 )  we get 
By applying Jacobi’s theorem (equation (1)) to the determinant Qn and using 

whenever Pn-l it 0. 
Now, by assuming that Pn-l  > 0 and noting that when z = 0 

Pnlpn-1 > Q  

2 it follows from (6) that Pn > 0. But P I  = $(z - c) and hence the lemma follows by 
induction. 

Theorem. The determinantal polynomial A,, has exactly n distinct real positive 
zeros. 



Infinite red-shift surfaces 

Proof, Applying Jacobi’s theorem to the determinant A, we get 

A 1 1An - 1 - A 1 n, 1 A n  = P’, - 1 > 0 (lemma) 

and from (7) it follows that A, and A,-1 cannot have a common real zero. 
Now, if 

Bn = IbijIn 

where 
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(7) 

c(1 +z ) ‘+ ’ - l+ ( l  - C ) z ’ + ’ - l  b . .  = 
i + j - l  

then 

A, = B, (8) 

A, =Bii (the cofactor of b l l )  (9) 

(see Dale 1978). By applying Jacobi’s theorem to the determinant B, and using 
equations (8) and (9) we get 

whenever A,-1 # 0. Also, when z = 0 

AnIAn-ic 0 (11)  
and for large z 

(12) 

If we now assume that the real zeros of A,-l occur at z = z,, i = 0, 1,  . . . , (n -2), and 
that 0 < zo < z1 . . . < z , - ~ ,  then since A, and A,-l have no common real zero it follows 
from equations (10)-(12) that in each of the intervals 0 < z < zo, z i  < z < z , + ~ ,  
(i = 0,1 ,  . . . , n - 3), z > z,-~, A, has one and only one real zero and none in the interval 
z < 0. Hence, if the theorem is true for A,-1 it is true for A,. But A 1  = z + c, which has 
one real positive zero. Therefore, by induction, A, must have n distinct real positive 
zeros. Further, from equation (7) we see that A l l  and A, cannot have a common real 
zero. But since (Dale 1978) 

2 2,-1 A,/A,-i-k z . 

(1+z)A,-n2A,  = ( l - c ) A l l  

it follows that A, and A, cannot have a common real zero, i.e. none of the real zeros of 
A, is repeated. 
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