

Home Search Collections Journals About Contact us My IOPscience

The number of infinite red-shift surfaces of the generalised Kerr-Tomimatsu-Sato metric

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1979 J. Phys. A: Math. Gen. 12 835 (http://iopscience.iop.org/0305-4470/12/6/012)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 01/06/2010 at 16:06

Please note that terms and conditions apply.

The number of infinite red-shift surfaces of the generalised Kerr-Tomimatsu-Sato metric

P Dale

42 Ferguson Road, Olbury, Warley, West Midlands, UK

Received 8 August 1978, in final form 2 November 1978

Abstract. A proof that a certain polynomial has n real zeros is presented. From this it then follows that the generalised Kerr-Tomimatsu-Sato metric has 2n distinct infinite red-shift surfaces.

1. Introduction

The number of real roots of the determinantal polynomial (Yamazaki 1977, Dale 1978)

$$A_n = |a_{ij}|_n$$

where

$$a_{ij} = \frac{z^{i+j-1} + (-1)^{i+j}c}{i+j-1}$$

and c is an arbitrary negative constant is of significance for the Kerr (1963) and Tomimatsu-Sato (1973) class of metrics. Since in this case the norm of the Killing vector (∂t) is A_n/B , an infinite red-shift surface will occur when $A_n = 0$. In this paper it will be shown that A_n has n distinct real positive zeros, from which it then follows that there are 2n such surfaces (Cosgrove 1977).

In the theorems which follow, use will be made of Jacobi's theorem in the following form.

Let

$$D_n = |d_{ij}|_n$$

be a symmetrical determinant of order $n \ (\geq 2)$; then

$$D_{11}D_{nn} - D_{1n,1n}D_n = D_{1n}^2 \tag{1}$$

where D_{ij} is the cofactor of d_{ij} and $D_{1n,1n}$ denotes the determinant obtained from D by deleting the first and nth rows and columns.

2. The number of real zeros of A_n

Lemma. If

$$P_n = |\alpha_{ij}|_n$$

836 *P Dale*

where

$$\alpha_{ij} = \frac{z^{i+j} - c(-1)^{i+j}}{i+j}$$

then $P_n > 0$.

Proof. Let

$$\alpha = (\alpha_{ij})_n \qquad \beta = (\beta_{ij})_n,$$

where

$$\beta_{ij} = {i-1 \choose j-1} \xi^{i-j}$$
 $(i \ge j)$ and $\beta_{ij} = 0$ $(i < j)$

and form the matrix product $\beta \alpha \beta^{T}$ where the T denotes the transpose. Let

$$\gamma = (\gamma_{ij})_n = \beta \alpha \beta^{\mathrm{T}}.$$
(2)

Taking determinants of (2) we get

$$P_n = P_n(z, 0, c) = P_n(z, \xi, c)$$
(3)

where

$$P_n(z,\xi,c) = |\gamma_{ij}|_n. \tag{4}$$

Differentiating the identity (3) partially with respect to z and then putting $\xi = -z$ we get

$$\dot{P}_n = zQ_{11} \tag{5}$$

where Q_{11} is the cofactor of λ_{11} in

$$Q_n = |\lambda_{ij}|_n$$

$$\lambda_{ij} = \frac{(1-c)z^{i+j} + c(z-i-j+1)(1+z)^{i+j-1}}{(i+j)(i+j-1)}$$

and the dot denotes differentiation with respect to z.

By applying Jacobi's theorem (equation (1)) to the determinant Q_n and using equations (3) and (5) we get

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{P_n}{P_{n-1}}\right) = z \left(\frac{Q_{1n}}{P_{n-1}}\right)^2 \tag{6}$$

whenever $P_{n-1} \neq 0$.

Now, by assuming that $P_{n-1} > 0$ and noting that when z = 0

$$P_n/P_{n-1}>0$$

it follows from (6) that $P_n > 0$. But $P_1 = \frac{1}{2}(z^2 - c)$ and hence the lemma follows by induction.

Theorem. The determinantal polynomial A_n has exactly n distinct real positive zeros.

Proof. Applying Jacobi's theorem to the determinant A_n we get

$$A_{11}A_{n-1} - A_{1n,1n}A_n = P_{n-1}^2 > 0 \qquad (\text{lemma})$$
(7)

and from (7) it follows that A_n and A_{n-1} cannot have a common real zero. Now, if

$$B_n = |b_{ij}|_n$$

where

$$b_{ij} = \frac{c(1+z)^{i+j-1} + (1-c)z^{i+j-1}}{i+j-1}$$

then

 $A_n = B_n \tag{8}$

$$\dot{\mathbf{A}}_n = \mathbf{B}_{11}$$
 (the cofactor of b_{11}) (9)

(see Dale 1978). By applying Jacobi's theorem to the determinant B_n and using equations (8) and (9) we get

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{A_n}{A_{n-1}} \right) \ge 0 \tag{10}$$

whenever $A_{n-1} \neq 0$. Also, when z = 0

$$A_n/A_{n-1} < 0 \tag{11}$$

and for large z

$$A_n/A_{n-1} \sim k^2 z^{2n-1}.$$
 (12)

If we now assume that the real zeros of A_{n-1} occur at $z = z_i$, $i = 0, 1, \ldots, (n-2)$, and that $0 < z_0 < z_1 \ldots < z_{n-2}$, then since A_n and A_{n-1} have no common real zero it follows from equations (10)-(12) that in each of the intervals $0 < z < z_0$, $z_i < z < z_{i+1}$, $(i = 0, 1, \ldots, n-3)$, $z > z_{n-2}$, A_n has one and only one real zero and nome in the interval z < 0. Hence, if the theorem is true for A_{n-1} it is true for A_n . But $A_1 = z + c$, which has one real positive zero. Therefore, by induction, A_n must have *n* distinct real positive zeros. Further, from equation (7) we see that A_{11} and A_n cannot have a common real zero. But since (Dale 1978)

$$(1+z)\dot{A}_n - n^2A_n = (1-c)A_{11}$$

it follows that A_n and \dot{A}_n cannot have a common real zero, i.e. none of the real zeros of A_n is repeated.

References

Cosgrove C M 1977 J. Phys. A: Math. Gen. 10 1481 Dale P 1978 Proc. R. Soc. A 362 463 Kerr R P 1963 Phys. Rev. Lett. 11 237 Tomimatsu A and Sato H 1973 Prog. Theor. Phys. 50 95 Yamazaki M 1977 Prog. Theor. Phys. 57 1951